
 
 
 
Many-Core Programming Environment  

Break the Many-Core Wall 

 

 

© 2011 CAPS entreprise. All rights reserved - All product and company names herein may be trademarks of their registered owners. 

How to Write Code 
to Survive the Many-Core Revolution?   

Pushed by the pace of innovation in the many-core technologies, 

including graphic processing units (GPUs), the processor 

landscape is moving fast.  

As a consequence of the processor frequency stagnation, in 2013-

2014, the number of parallel cores in general-purpose 

processors will be comparable to the number of cores 

contained in NVIDIA™ GPUs in 2007. 

By being a high level model, directive-based approaches like 

HMPP™ abstract the programming of many-core applications, keep 

them hardware independent and ensure their portability across 

new generations of hardware. 

 

HMPP, a Directive‐based Multi-language and Multi-target Programming Model 

Based on a set of OpenMP™-like directives that preserve legacy codes, HMPP fully leverages the performance offered 

by most of today’s stream processors. You keep your software independent from hardware targets while preparing for 

future architectures (Sandy Bridge, MIC, AMD Fusion, NVIDIA Denver…).  

Complementary to OpenMP and MPI™, HMPP lets you incrementally develop or port existing applications to many-

core without the complexity associated with many-core programming. 

Pioneer in the directive-based approach with its HMPP flagship product, CAPS also delivers software development 

tools, solutions and expertise that help organizations to adapt the way their applications are developed in order to benefit 

from the performance of many-core architectures. 

What You Get with HMPP 

 With one source code, target multiple many-core architectures 

 Distribute computation over CPU and GPU cores (Multi-GPU) 

 High performance with optimized data management 

 Interoperability with libraries 

 Protect your software investment by using an Open Standard 

     

 

 

 

 

  

 

From C/C++/FORTRAN, 

Using your Compiler 

to 
 
 
 

 

   

BE PART 

of a Worldwide  

Ecosystem  



 

Headquarters - FRANCE 

Immeuble CAP Nord 

4A Allée Marie Berhaut 

35000 Rennes 

France 

Tel.: +33 (0)2 22 51 16 00 

info@caps-entreprise.com 

CAPS - USA 

4701 Patrick Drive Bldg 12 

Santa Clara 

CA 95054 

 

Tel.: +1 408 550 2887 x70 

usa@caps-entreprise.com 

CAPS - CHINA 

Suite E2, 30/F 

JuneYao International Plaza 

789, Zhaojiabang Road,  

Shanghai 200032 

Tel.: +86 21 3363 0057 

apac@caps-entreprise.com 

 

A Directive-based Programming Model for C/C++/FORTRAN 

HMPP directives are meta-information added in the application source code that do not 

change the semantic of the original code. They address the remote execution (RPC) 

of functions or regions of code on GPUs and many-core accelerators as well as the 

transfer of data to and from the target device memory. 

HMPP offers an incremental way of migrating applications by first declaring and 

generating kernels of critical computations, then by managing data transfers and finally 

by optimizing kernel performance and data synchronization.  

 

A Source-to-source Compiler with CUDA and OpenCL Back-ends 

HMPP is complementary to existing parallel APIs (OpenMP or MPI). 

From the HMPP annotated application, HMPP separately compiles the native host 

application and the GPU accelerated codelet functions as software plugins so that 

CPU code does not require any compiler change. 

The codelets are translated in NVIDIA CUDA and OpenCL languages by the HMPP 

back-ends and compiled with the hardware vendor tools, leveraging existing SDKs. 

HMPP offers a mechanism to obtain interoperability between user’s code and highly 

optimized libraries such as cuFFT… 

 

 

 

 

A Runtime to Manage Data &  
Workload Distribution 

Linked with the HMPP runtime, the native host 

application is able to execute standalone or to load and 

run the targeted codelet libraries when GPUs are present 

and available. 

HMPP runtime scales to multi-GPUs and is free of use. 

 

 

 

 

Supported Platforms and Compilers 

Compilers: 

- Intel 11.1+ 

- GNU gcc 4.1+ 

- GNU gfortran 4.3+ 

- Open64 4.2+ 

- PGI 10.0+ 

- SUN 12.1+ 

- Absoft Pro Fortran 11.0+ 

Operating Systems:  

- Debian 5.0+ 

- RedHat Entreprise 

- Linux 5.3+ 

- OpenSuse 11.x 

- SLES 11.0 

- Ubuntu 9.10 & 10.04 

 Compilers:  

- Visual Studio 2008 SP1 IDE 

- Absoft Pro Fortran 11.1.2+  

Operating Systems:  

- Microsoft Windows HPC Server 2008 R2 

- Windows 7 

With All NVIDIA® Tesla™ and AMD-ATI FireStream™ 

 

 

 

 

Preserve serial code 

Incremental programming 
reduces risk and cost 

Do not commit to a 

hardware platform-specific 
dialect 

Use a standardized 

approach (e.g. 
OpenHMPP) 

Focus on highlighting 

parallelism, not its 
implementation 

Do not require changing 
the coding base language 

Avoid mixing languages 

Allow to keep a unique 
source code 

Do not create 

dependencies on  
a runtime library 

Ease interaction between 

application and computer 
science people 

10 

REASONS 

D i r e c t i v e s  

to Use 


